Vilket är det mest kostnadseffektiva kärnmaterialet för högvolymproduktion?
För högvolymproduktion är kiselstål (0,20-0,35 mm) fortfarande det mest kostnadseffektiva alternativet. Det erbjuder en utmärkt balans mellan prestanda, tillverkningsbarhet och kostnad. För applikationer som kräver bättre högfrekvensprestanda ger ultratunt kiselstål (0,10-0,15 mm) förbättrad effektivitet med endast en måttlig kostnadsökning. Avancerade kompositlamineringar kan också minska den totala tillverkningskostnaden genom förenklade monteringsprocesser.
Hur väljer jag mellan amorfa metaller och nanokristallina kärnor?
Valet beror på dina specifika krav: Amorfa metaller ger de lägsta kärnförlusterna (70-90 % lägre än kiselstål) och är idealiska för applikationer där effektiviteten är av största vikt. Nanokristallina kärnor ger en bättre kombination av hög permeabilitet och låga förluster, tillsammans med överlägsen temperaturstabilitet och mekaniska egenskaper. Välj i allmänhet amorfa metaller för maximal effektivitet vid höga frekvenser och nanokristallina kärnor när du behöver balanserad prestanda över ett bredare spektrum av driftsförhållanden.
Är kobolt-järnlegeringar värda premiumkostnaden för EV-applikationer?
För premium EV-applikationer där effekttäthet och effektivitet är kritiska, kan kobolt-järnlegeringar som Vacodur 49 ge betydande fördelar. Effektiviteten på 2-3 % och storleksminskningen på 20-30 % kan motivera den högre materialkostnaden i prestandaorienterade fordon. Men för elbilar på massmarknaden ger avancerade kiselstålkvaliteter ofta bättre övergripande värde. Vi rekommenderar att du gör en total livscykelkostnadsanalys inklusive effektivitetsvinster, potential för minskning av batteristorleken och besparingar för värmehantering.
Vilka tillverkningsöverväganden är olika för avancerade kärnmaterial?
Avancerade material kräver ofta specialiserade tillverkningsmetoder: Laserskärning istället för stämpling för att förhindra spänningsinducerad magnetisk degradering, specifika värmebehandlingsprotokoll med kontrollerad atmosfär, kompatibla isoleringssystem som tål högre temperaturer och modifierade staplings-/bindningstekniker. Det är viktigt att involvera materialleverantörer tidigt i designprocessen för att optimera både materialval och tillverkningsmetod.
Vilka tjocklekar finns det för motorlamineringsstål? 0,1 mm?
Tjockleken på motorkärnlamineringsstål inkluderar 0,05/0,10/0,15/0,20/0,25/0,35/0,5MM och så vidare. Från stora stålverk i Japan och Kina. Det finns vanligt kiselstål och 0,065 högt kiselstål. Det finns låg järnförlust och hög magnetisk permeabilitet kiselstål. Lagerkvaliteterna är rika och allt finns tillgängligt..
Vilka tillverkningsprocesser används för närvarande för motorlamineringskärnor?
Förutom stansning och laserskärning kan även trådetsning, rullformning, pulvermetallurgi och andra processer användas. De sekundära processerna för motorlaminering inkluderar limlaminering, elektrofores, isoleringsbeläggning, lindning, glödgning, etc.
Hur beställer man motorlaminering?
Du kan skicka oss din information, såsom designritningar, materialkvaliteter etc., via e-post. Vi kan göra beställningar på våra motorkärnor oavsett hur stora eller små, även om det är 1 st.
Hur lång tid brukar det ta för dig att leverera kärnlamineringarna?
Våra ledtider för motorlaminat varierar beroende på ett antal faktorer, inklusive orderstorlek och komplexitet. Normalt är ledtiderna för vår laminatprototyp 7-20 dagar. Volymproduktionstider för rotor- och statorkärnstaplar är 6 till 8 veckor eller längre.
Kan du designa en motorlaminatstapel åt oss?
Ja, vi erbjuder OEM- och ODM-tjänster. Vi har lång erfarenhet av att förstå motorisk kärnutveckling.
Vilka är fördelarna med bindning kontra svetsning på rotor och stator?
Konceptet med rotorstatorbindning innebär att man använder en rullbeläggningsprocess som applicerar ett isolerande bindemedel på motorlamineringsskivorna efter stansning eller laserskärning. Lamineringarna placeras sedan i en staplingsfixtur under tryck och upphettas en andra gång för att slutföra härdningscykeln. Limning eliminerar behovet av nitskarvar eller svetsning av magnetkärnorna, vilket i sin tur minskar interlaminära förluster. De bundna kärnorna visar optimal värmeledningsförmåga, inget brumljud och andas inte vid temperaturförändringar.
Klarar limlimning höga temperaturer?
Absolut. Limbindningstekniken vi använder är designad för att tåla höga temperaturer. De lim vi använder är värmebeständiga och bibehåller bindningsintegriteten även under extrema temperaturförhållanden, vilket gör dem idealiska för högpresterande motorapplikationer.
Vad är limpunktsbindningsteknik och hur fungerar det?
Limpunktsbindning innebär att man applicerar små limprickar på laminaten, som sedan binds samman under tryck och värme. Denna metod ger en exakt och enhetlig bindning, vilket säkerställer optimal motorprestanda.
Vad är skillnaden mellan självbindning och traditionell bindning?
Självbindning hänvisar till integreringen av bindningsmaterialet i själva laminatet, vilket gör att bindningen kan ske naturligt under tillverkningsprocessen utan behov av ytterligare lim. Detta möjliggör en sömlös och långvarig bindning.
Kan bondade laminat användas för segmenterade statorer i elmotorer?
Ja, bondade lamineringar kan användas för segmenterade statorer, med exakt bindning mellan segmenten för att skapa en enhetlig statorenhet. Vi har mogen erfarenhet inom detta område. Välkommen att kontakta vår kundtjänst.