Mikä on kustannustehokkain ydinmateriaali suurtuotantoon?
Suuren volyymin tuotannossa piiteräs (0,20–0,35 mm) on edelleen kustannustehokkain vaihtoehto. Se tarjoaa erinomaisen suorituskyvyn, valmistettavuuden ja kustannusten tasapainon. Parempaa korkeataajuista suorituskykyä vaativissa sovelluksissa ultraohut piiteräs (0,10–0,15 mm) parantaa tehokkuutta vain kohtuullisella kustannusten nousulla. Edistyneet komposiittilaminoinnit voivat myös vähentää kokonaisvalmistuskustannuksia yksinkertaistettujen kokoonpanoprosessien ansiosta.
Kuinka valitsen amorfisten metallien ja nanokiteisten ytimien välillä?
Valinta riippuu erityisvaatimuksistasi: Amorfiset metallit tarjoavat pienimmät ydinhäviöt (70-90 % pienemmät kuin piiteräs) ja ovat ihanteellisia sovelluksiin, joissa tehokkuus on ensiarvoisen tärkeää. Nanokiteiset ytimet tarjoavat paremman yhdistelmän korkeaa läpäisevyyttä ja pieniä häviöitä sekä erinomaisen lämpötilan stabiilisuutta ja mekaanisia ominaisuuksia. Yleensä valita amorfiset metallit maksimaalisen tehokkuuden saavuttamiseksi korkeilla taajuuksilla ja nanokiteisiä ytimiä, kun tarvitset tasapainoista suorituskykyä useissa käyttöolosuhteissa.
Ovatko koboltti-rautaseokset sähköajoneuvojen sovellusten premium-kustannusten arvoisia?
Korkealuokkaisissa sähköajoneuvoissa, joissa tehotiheys ja hyötysuhde ovat kriittisiä, koboltti-rautaseokset, kuten Vacodur 49, voivat tarjota merkittäviä etuja. 2-3 % tehokkuuden lisäys ja 20-30 % koon pieneneminen voivat oikeuttaa korkeammat materiaalikustannukset suorituskykyisissä ajoneuvoissa. Kuitenkin massamarkkinoiden sähköautoissa edistyneet piiteräslaadut tarjoavat usein paremman kokonaisarvon. Suosittelemme tekemään kokonaiselinkaarikustannusanalyysin, joka sisältää tehokkuuden kasvun, akun koon pienentämisen ja lämmönhallinnan säästöjä.
Mitkä valmistusnäkökohdat ovat erilaisia edistyneille ydinmateriaaleille?
Kehittyneet materiaalit vaativat usein erikoistuneita valmistusmenetelmiä: laserleikkaus leimaamisen sijaan jännityksen aiheuttaman magneettisen hajoamisen estämiseksi, erityiset lämpökäsittelyprotokollat kontrolloiduilla ilmakehillä, yhteensopivat eristysjärjestelmät, jotka kestävät korkeampia lämpötiloja, ja modifioidut pinoamis-/sidontatekniikat. Materiaalintoimittajat on otettava mukaan suunnitteluprosessin varhaisessa vaiheessa, jotta voidaan optimoida sekä materiaalin valinta että valmistustapa.
Mitä paksuuksia moottorilaminointiteräkselle on olemassa? 0,1 mm?
Moottorisydämien laminointiteräslaatujen paksuus sisältää 0,05/0,10/0,15/0,20/0,25/0,35/0,5 mm ja niin edelleen. Suurilta terästehtailta Japanissa ja Kiinassa. On tavallista piiterästä ja 0,065 korkeapiiterästä. Siinä on pieni rautahäviö ja korkea magneettinen läpäisevyys piiteräksestä. Varastolaatuja on runsaasti ja kaikkea on saatavilla..
Mitä valmistusprosesseja käytetään tällä hetkellä moottorin laminointiytimissä?
Leimaamisen ja laserleikkauksen lisäksi voidaan käyttää myös langan etsausta, rullamuovausta, jauhemetallurgiaa ja muita prosesseja. Moottorilaminoinnin toissijaisia prosesseja ovat liimalaminointi, elektroforeesi, eristyspinnoitus, käämitys, hehkutus jne.
Kuinka tilata moottorilaminaatioita?
Voit lähettää meille tietosi, kuten suunnittelupiirrokset, materiaaliarvosanat jne. sähköpostitse. Voimme tehdä tilauksia moottorisydämillemme riippumatta siitä, kuinka suuri tai pieni, vaikka se olisi 1 kpl.
Kuinka kauan yleensä kestää ydinlaminointien toimittamisessa?
Moottorilaminaatimme toimitusajat vaihtelevat useiden tekijöiden mukaan, mukaan lukien tilauksen koko ja monimutkaisuus. Laminaattiprototyyppimme toimitusajat ovat tyypillisesti 7-20 päivää. Roottori- ja staattorisydänpinojen volyymituotantoajat ovat 6–8 viikkoa tai pidemmät.
Voitko suunnitella meille moottorilaminaattipinon?
Kyllä, tarjoamme OEM- ja ODM-palveluita. Meillä on laaja kokemus moottoriydinkehityksen ymmärtämisestä.
Mitä etuja roottorin ja staattorin liittämisestä on hitsaukseen verrattuna?
Käsite roottorin staattorin sidos tarkoittaa telapinnoitusprosessin käyttöä, jossa eristävä liima-aine levitetään moottorin laminointilevyihin lävistyksen tai laserleikkauksen jälkeen. Laminaatiot asetetaan sitten pinottavaan telineeseen paineen alaisena ja kuumennetaan toisen kerran kovetusjakson loppuunsaattamiseksi. Liimaus poistaa tarpeen niittiliitoksille tai magneettisydämien hitsaukselle, mikä puolestaan vähentää kerrosten välistä häviötä. Liimattujen ytimien lämmönjohtavuus on optimaalinen, ei huminaa eivätkä hengitä lämpötilan vaihteluissa.
Kestääkö liimaus korkeita lämpötiloja?
Täysin. Käyttämämme liimaustekniikka on suunniteltu kestämään korkeita lämpötiloja. Käyttämämme liimat ovat lämmönkestäviä ja säilyttävät sidoksen eheyden jopa äärimmäisissä lämpötiloissa, mikä tekee niistä ihanteellisia korkean suorituskyvyn moottorisovelluksiin.
Mikä on liimapisteliimaustekniikka ja miten se toimii?
Liimapisteliittäminen tarkoittaa pienten liimapisteiden levittämistä laminaatteihin, jotka sitten liimataan yhteen paineen ja lämmön alaisena. Tämä menetelmä tarjoaa tarkan ja tasaisen sidoksen, mikä varmistaa optimaalisen moottorin suorituskyvyn.
Mitä eroa on itsekiinnityksellä ja perinteisellä liimauksella?
Itsekiinnityksellä tarkoitetaan sidosmateriaalin integroimista itse laminaattiin, mikä mahdollistaa sitoutumisen tapahtuvan luonnollisesti valmistusprosessin aikana ilman lisäliimojen tarvetta. Tämä mahdollistaa saumattoman ja pitkäkestoisen sidoksen.
Voidaanko liimattuja laminaatteja käyttää segmentoiduissa sähkömoottoreissa?
Kyllä, sidottuja laminointeja voidaan käyttää segmentoiduissa staattoreissa, jolloin segmenttien välinen tarkka liimaus luodaan yhtenäinen staattorikokoonpano. Meillä on kypsä kokemus tältä alalta. Tervetuloa ottamaan yhteyttä asiakaspalveluumme.